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Abstract In the Southern Hemisphere and tropics, the main contribution to carbon monoxide (CO)
variability is from fire emissions, which are connected to climate through the availability, type, and dryness
of fuel. Here we assess the data-driven relationships between CO and climate, aiming to predict atmospheric
loading during fire seasons. Observations of total column CO from the Measurements Of Pollution In The
Troposphere satellite instrument are used to build a record of monthly anomalies between 2001 and 2016,
focusing on seven biomass burning regions of the Southern Hemisphere and tropics. With the exception
of 2015, the range of absolute variability in CO is similar between regions. We model CO anomalies in each of
the regions using climate indices for the climate modes: El Niño–Southern Oscillation, Indian Ocean Dipole,
Tropical South Atlantic, and Antarctic Oscillation. Stepwise forward and backward variable selection is used
to choose from statistical regression models that use combinations of climate indices, at lag times between
1 and 8 months relative to CO anomalies. The Bayesian information criterion selects models with the best
predictive power. We find that all climate mode indices are required to model CO in each region, generally
explaining over 50% of the variability and over 70% for tropical regions. First-order interaction terms of the
climate modes are necessary, producing greatly improved explanation of CO variability over single terms.
Predictive capability is assessed for the Maritime Southeast Asia and the predicted peak CO anomaly in 2015
is within 20% of the measurements.

1. Introduction

The link between fire and atmospheric carbon monoxide (CO) is well established for the Southern Hemi-
sphere and tropics (e.g., Edwards, Emmons, et al., 2006; Gloudemans et al., 2006). In the Southern Hemisphere,
biomass burning is the main source of CO variability (e.g., Voulgarakis et al., 2015). Atmospheric CO is pro-
duced directly by incomplete combustion from biomass burning as well as fossil fuel use and indirectly by
photochemistry. In addition to being a criteria pollutant that degrades air quality, CO plays a critical role in
tropospheric chemistry as a precursor to ozone (O3) and as a primary sink for the hydroxyl radical (OH). CO has
a moderate lifetime of weeks to months, making observations of CO from space useful for tracking coemitted
pollutants that are more difficult to measure, such as black carbon (Arellano et al., 2010) and other aerosols
and trace gases (Bian et al., 2010; Edwards et al., 2004; Pumphrey et al., 2011; Zhang et al., 2006). Predictions
of CO loading can therefore serve as a proxy for other air pollutants, such as aerosols, in air quality forecasts
during fire seasons.

While ignition of fires in the present era is predominantly due to humans (Bowman et al., 2011; Costafreda-
Aumedes et al., 2017), fire intensity and burned area are related to the amount, type, and dryness of avail-
able fuel, which respond to climate-driven water availability combined with ecosystem responses (van der
Werf et al., 2008). Consequently, the magnitude of emissions from biomass burning, such as for CO, is con-
nected to climate variability. Emissions of CO contribute to air pollution near fire sources, as well as globally
through long-range transport. Although emissions are the main driver in the regions we study (Voulgarakis
et al., 2010, 2015), transport patterns can also contribute to CO variability (e.g., Bowman, 2006). There-
fore, climate influences on both emissions and dynamics can play a role in determining CO interannual
variability (IAV).
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Relationships between climate conditions and fire occurrence have been previously studied. For instance, fire
responds differently to rainfall depending on the region of interest. Drought was found to increase fire occur-
rence in Maritime SEA (Andela & van der Werf, 2014; van der Werf et al., 2008) and exponentially increase
resulting emissions (Yin et al., 2016) due to more agricultural burning of drained swampland that introduced
high CO-emitting peat to fire (Field et al., 2016). In contrast, drought reduced fire frequency in Australia,
while fire relationships to rainfall in Africa and South America are spatially varying, depending on the balance
between rainfall’s influence on growth of available fuel and the length of the dry season (Andela & van der
Werf, 2014; Aragão et al., 2007; van der Werf et al., 2008). Bloom et al. (2015) suggested that large differences in
fire emissions between 2 years with similar total burnt area in South America were due to reduced vegetation
growth impacted by drought.

The El Niño–Southern Oscillation (ENSO) climate mode is often used as a prediction of regional climate vari-
ability. However, other climate modes have been linked to teleconnections with regional climate responses,
such as influencing rainfall and drought (e.g., Andreoli & Kayano, 2006; Hendon et al., 2007; Marengo et al.,
2016; Saji & Yamagata, 2003). Impacting regional climate has the potential to influence biomass burning.
For example, Field et al. (2009) found that the Indian Ocean Dipole (IOD) was just as important a contribu-
tor as ENSO to fires in Indonesia. The direct influence of multiple climate modes on fires was investigated
by Chen et al. (2016), who used a set of ocean climate indices to model global burned area using multi-
linear regression and found that a combination of two climate modes describes more variability in burned
area than a single climate mode. Additionally, the interaction of climate modes is important. For instance,
Cleverly et al. (2016) found that interacting climate modes were responsible for the Australian water and car-
bon sink in 2011. Furthermore, they found that when IOD and ENSO modes are synchronized, the impact on
rainfall was substantially larger than when not synchronized.

In contrast to fire products and emissions, limited research has linked atmospheric CO loading variability with
climate modes. Edwards, Pétron, et al. (2006) used 5 years of CO retrievals from the Measurements Of Pollu-
tion In The Troposphere (MOPITT) satellite instrument. They suggested a connection between ENSO, burned
area, and CO anomalies for four regions of the Southern Hemisphere and tropics. Here we extend the analysis
of Edwards, Pétron, et al. (2006) to include MOPITT data up to 2016 and examine links between CO and mul-
tiple climate modes, including ENSO. We follow a similar method to Wespes et al.(2016, 2017), who develop
relationships between atmospheric composition (O3 loading) and a range of descriptive variables, including
climate modes. Our focus is on the relationship between four climate modes and CO IAV and to assess the
importance of climate mode interactions.

The satellite data set, regions of interest, and climate indices are outlined in section 2. Section 3 discusses
CO variability in the selected regions of the Southern Hemisphere and tropics. We systematically develop
explanatory models between climate mode indices and CO IAV, with the goal of predicting future CO loading.
Statistical methodology and resulting models with the most predictive power are presented in section 4, and
model predictive capability for the Maritime SEA region is assessed in section 4.3. Potential causal implications
are discussed in section 5, and section 6 presents our conclusions.

2. Observational Data Sets
2.1. Satellite Observations
The MOPITT instrument on the National Aeronautics and Space Administration Earth Observing System/Terra
satellite provides the longest record of CO measurements from space, currently with over 18 years of
near-continuous data, starting in 2000. Equator overpass occurs at ∼10:30 and ∼22:30 (local solar time), and
MOPITT uses a cross-track scan that allows for complete Earth coverage in about 3 days, with a ground-pixel
size of 22 × 22 km. Extensive validation studies cover a wide variety of locations and environments (e.g.,
Buchholz et al., 2017; Deeter et al., 2017; Emmons et al., 2009).

MOPITT retrievals use the optimal estimation retrieval approach (Deeter et al., 2003; Rodgers, 2000). A priori
profiles are combined with radiance measurements to statistically determine a maximum a posteriori solution.
We use MOPITT version 7 (V7), which has a priori profiles gridded at 1.9∘ latitude × 2.5∘ longitude resolution,
taken from a climatological 2000–2009 run of CAM-chem (Lamarque et al., 2012). MOPITT retrievals use the
MERRA reanalysis products (Modern-Era Retrospective analysis for Research Applications) to estimate mete-
orological parameters in the retrieval process (Rienecker et al., 2011). Major improvements in the V7 product
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Figure 1. Boxes in (a) define the regions of interest and are overplotted on a map of average September to December
total column CO from Measurements of Pollution in The Troposphere V7-thermal infrared between 2001 and 2016. Note
that we select only retrievals over land within these boundaries. MSEA = Maritime SEA; NAus = North Australasia;
SAus = South Australasia; CSAf = Central Southern Africa; SSAf = South Southern Africa; CSAm = Central South America;
SSAm = Southern South America. The base plot in (b) is standard deviation of total column CO that corresponds to (a),
overplotted in red boxes that define regions of the sea surface temperature climate indices, TSA, DMI, and Niño3.4.
White arrows schematically depict the displacement of westerly winds associated with the atmospherically defined
climate index, SAM. Climate indices are described in section 2.2. TSA = Tropical South Atlantic; DMI = Dipole Mode
Index; SAM = Southern Annular Mode.

are described in Deeter et al. (2017). MOPITT products are publicly available through several repositories
linked via http://terra.nasa.gov/about/terra-instruments/mopitt or https://www2.acom.ucar.edu/mopitt.

The stable systematic bias found for the MOPITT total column product makes it well suited for analyzing
long time series (Deeter et al., 2017). In order to reduce systematic and random error, we select daytime,
land-only retrievals from the thermal infrared (TIR) product (MOPITT Science Team, 2013). Daytime retrievals
have higher sensitivity to CO due to higher thermal contrast compared with nighttime retrievals (Deeter et al.,
2007). Restricting analysis to land-only scenes minimizes the effect of different retrieval sensitivity between
land and water scenes. The TIR product has lower random error compared to the near-infrared or multispec-
tral products (Deeter et al., 2014) and similar sensitivity as the multispectral product to total column CO from
large-scale fires. Averaging over large areas and month time scales further reduces random error to negligi-
ble amounts. We find that spatial averages over large areas, such as the regions chosen in this study, produce
equivalent CO timeseries and anomalies for TIR and multispectral products (not shown). Therefore, while we
only analyze the TIR product, results will translate to the multispectral product.

For each region of interest, a spatial and climatological average of monthly total column CO between 2001
and 2016 is determined and subtracted from monthly average values to produce a time series of monthly CO
anomalies. The anomaly data sets developed and used in this study are publicly available through the National
Center for Atmospheric Research (NCAR) Research Data Archive (https://rda.ucar.edu/datasets/ds682.0, doi:
10.5065/D61N7ZX4).
2.1.1. Selected Regions
We investigate IAV in CO for four main biomass burning regions in the tropics and Southern Hemisphere:
Maritime SEA (10–10∘N, 90–160∘E), Australasia (50–10∘S, 110–180∘E), southern Africa (40–10∘S, 0–60∘E)
and South America (60–5∘S, 80–32∘W; Figure 1). The latter three regions required splitting into subregions in
order to account for different CO variability patterns within each subregion. In general, we split these regions
into tropical and temperate regions at 25∘S. While the tropical regions tend to have more biomass burning
than the temperate ones, temperate regions are more populated and air quality has a greater potential for
impacts on human health.

Australasia is split into two regions, approximately into tropical (North Australasia: 25–10∘S, 110–180∘E) and
temperate (South Australasia: 50–25∘S, 110–180∘E) subregions. The frequency of large fires is substantially
higher in the tropical subregion compared to the temperate subregion (Russell-Smith et al., 2007), and peak
fire seasons differ between the subregions (Langmann et al., 2009; Russell-Smith et al., 2007). Additionally,
the majority of agricultural activities are found below 25∘S (Bryan et al., 2016) as well as more than 85%
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Table 1
Overview of Climate Mode Indices Used in This Study

Climate mode Index name Source

ENSO Niño 3.4 www.cpc.ncep.noaa.gov/data/indices/

IOD Dipole Mode Index (DMI) stateoftheocean.osmc.noaa.gov/sur/ind/dmi.php

TSA Tropical South Atlantic (TSA) www.cpc.ncep.noaa.gov/data/indices/

AAO Southern Annular Mode (SAM) www.cpc.ncep.noaa.gov/products/precip/CWlink/

daily_ao_index/aao/aao.shtml

Note. ENSO = El Niño–Southern Oscillation; IOD = Indian Ocean Dipole; TSA = Tropical South Atlantic;
AAO = Antarctic Oscillation.

of the Australasia human population (Australian Bureau of Statistics, 2016). The standard deviation in CO
(Figure 1b) supports a split at 25∘S, indicating higher standard deviation in the tropical region compared to the
temperate region.

Two regions in southern Africa are investigated (Central Southern Africa: 25–10∘S, 0–60∘E, South Southern
Africa: 40–25∘S, 0–60∘E) because they produce clear signals in CO variability. They were split based on burned
area trends (Andela & van der Werf, 2014) and the peak fire season (Langmann et al., 2009). We initially con-
sidered a third latitudinally defined region (between 10∘S and 5∘N), but sources of atmospheric CO here
are a combination of competing patterns only partially responsive to climate-driven biomass burning. These
sources include anthropogenic and biogenic CO, mixing from the Northern Hemisphere as well as seasonally
variable biomass burning, resulting in unclear patterns of overall CO variability and consequently discounting
this region from further study.

We analyze two regions in South America, split into north and south at 25∘S and excluding areas north
of 5∘S because of multiple competing influences. Enhanced deforestation occurs in the northern tropical
region (Central South America: 25–5∘S, 83–32∘W) compared to the southern region (Southern South Amer-
ica: 58–25∘S, 80–32∘W), with peak deforestation occurring in the arc of deforestation (Aragão & Shimabukuro,
2010; Davidson et al., 2012). Although Chen et al. (2016) found different influences on burned area in the east
and west of the tropical region, prevailing easterly winds will tend to correlate CO variability between the east
and west; therefore, we retain one whole tropical region.

2.2. Climate Indices
Climate modes are chosen based on representing variability in dynamical processes for the major ocean
basins of the Southern Hemisphere and tropics. These modes are linked to regional climate responses such
as rainfall, and as a result we expect a relationship with drought, fires, and consequently CO anomalies. We
use measurement-based month average indices for climate modes over four ocean regions (Figure 1b): ENSO
represents the Pacific Ocean, IOD covers the Indian Ocean, the Tropical South Atlantic (TSA) for the south-
ern Atlantic Ocean, and the Antarctic Oscillation (AAO) for the Southern Ocean. Indices for each of these
modes are summarized in Table 1, and data sets are publicly available from either the Climate Prediction Cen-
ter or State of the Ocean repositories, which are both managed by the National Oceanic and Atmospheric
Administration (NOAA).

Indices for ENSO (Niño 3.4; Bamston et al., 1997) and TSA (Enfield et al., 1999) are calculated using sea surface
temperature (SST) anomalies in the regions 170–120∘W, 5–5∘N, and 30–10∘E, 20–0∘S, respectively. The IOD
index is calculated using SST gradients between two regions 50–70∘E, 10–10∘N, and 90–110∘E, 10–0∘ (DMI,
Saji et al., 1999). SST indices are created from the global Optimum Interpolation analysis: Reynolds OIv2 SST
(Reynolds et al., 2002), which is calculated using in situ and satellite measurements combined with simulations
of SST in sea ice regions. Satellite data are adjusted for biases prior to SST data set calculation (Reynolds, 1988;
Reynolds & Marsico, 1993).

The normalized index for AAO (SAM) captures Antarctic atmospheric circulation variability and describes the
poleward shift of westerly winds relative to the South Pole (e.g., Thompson & Wallace, 2000). The AAO index
is calculated by projecting observational height anomalies at 700 hPa and poleward of 20∘S onto the leading
empirical orthogonal function of the National Centers for Environmental Prediction/NCAR reanalysis, which
is determined over the base period of 1979 to 2000 (Kalnay et al., 1996; Kistler et al., 2001).
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Figure 2. Maritime SEA time series, 2001 to 2016, of (a) month average CO (gray circles) with the climatological seasonal
cycle (black line), (b) CO anomalies showing positive anomalies in tan and negative anomalies in green, and (c–f )
climate indices over the dates of interest with positive modes in red and negative modes in blue. SEA = Southeast Asia;
DMI = Dipole Mode Index; TSA = Tropical South Atlantic; SAM = Southern Annular Mode.

3. IAV in CO

In every region of interest, the average CO seasonal cycle displays a peak associated with biomass burn-
ing season, between September and October, reflecting the impact of local and/or transported emissions
(Figure 2a and supporting information Figures S2a, S2c, S3a, S3c, S4a, and S4c). Generally, only one annual
maximum is present, with the exception of the Maritime SEA region, which shows a smaller secondary peak
in March. This is most likely due to transport of fire emissions during the upper ASEAN (Association of South-
east Asian Nations) countries’ peak biomass burning season, which lasts from January–April (Bhardwaj et al.,
2016; Edwards, Pétron, et al., 2006). We do not consider this secondary peak in our study.

Anomalies in CO are calculated by subtracting climatological seasonal cycle from month average values and
are shown in Figure 2b and lower panels of supporting information Figures S2, S3, and S4. These anomalies
are much larger than random error, which is on the order of the zero-linewidth in Figure 2b. Anomalies clearly
indicate the regional IAV in CO loading over the 2001 to 2016 time period. In all regions, a higher frequency
of negative CO anomalies were present between 2008 and 2014 than outside those times. This potentially
reflects the global downward trend in CO (Worden et al., 2013). For the Maritime SEA region, the magnitude of
positive anomalies is enhanced in the later record relative to the early record, potentially indicating a general
upward trend in emissions for this region due to a general overall increase in biomass burning since 2000
(Fanin & van der Werf, 2017; Jiang et al., 2017; Stavrakou et al., 2014), which is not observed in the other regions.
However, we find a lack of trend significance, which is further discussed in section 4.2.

North Australasia shows higher variability than South Australasia, due to uncontrolled northern Savan-
nah fires, compared to fires in the south where human intervention is easier and more pertinent due to
higher populations (Russell-Smith et al., 2007). Central Southern Africa shows more dispersed peak of sig-
nal than Southern South Africa, which may be due to multiple vegetation types within the central region
combined with the influence of annually varying transport of Northern Hemisphere pollution. The central
region of South America experiences variable human influence from burning in the arc of deforestation and
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Figure 3. Variability in monthly atmospheric CO after subtraction of mean monthly values, plotted for multiple years for
different regions. Different years are represented by different colors.

consequently sees larger IAV in CO compared to the southern region. There is also a recent decrease in the
magnitude of positive anomalies over South America (supporting information Figure S4) that could be a
response to a slow down in deforestation on the continent, mainly in Brazil (Austin et al., 2017; Jiang et al.,
2017; Reddington et al., 2015).

In order to investigate the variability in CO further, we overplot the annual cycle of anomalies (Figure 3).
This shows that the largest and most variable deviations from the mean seasonal cycle occur during the
biomass burning season. Similar to the climatological seasonal cycle, regions show one period of peak
variability, apart from Maritime SEA that also includes enhanced variability during March. Discounting the
influence of the large El Niño that occurred in 2015, all regions generally show a range of anomalies within
±5 × 1017 molecules cm−2, which represents a range of approximately ±25%, relative to the climatological
month average values for each region. Although Edwards, Pétron, et al. (2006) showed that for the begin-
ning of the record, Maritime SEA and Australasia exhibited the highest variability, the longer record indicates
that variability in anomalies is similar between regions, with tropical regions generally showing higher vari-
ability than equivalent temperate regions. Additionally, the largest anomalies occur in different years for
different regions.

Since fire is the major driver of CO IAV in these regions, and fire landscape responses are driven by climate,
we investigate links between climate variability and atmospheric CO loading. The climate variability in the
four major ocean basins relevant for this study is represented by climate indices (defined in section 2.2),
which are displayed in Figures 2c–2f. The positive phase of ENSO (El Niño) is generally associated with pos-
itive CO anomalies. Edwards, Pétron, et al. (2006) noted this relationship for the MOPITT record between
2000 and 2005 and linked enhanced CO in El Niño years to increased fire activity. The first 5 years in Figure 2
suggests an intensity-based relationship, with higher MOPITT CO enhancements in larger El Niño years.
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However, when interpreting the 16-year record, the relationship between CO and ENSO is more complicated.
For instance, the 2009/2010 El Niño was larger than in 2006/2007 but induced lower CO anomalies in Maritime
SEA and South America. In the South America region, Bloom et al. (2015) found similar burnt area during these
two El Niño events but different combustion efficiency, which they attributed to different plant productivity
impacted by regional drought. A similar variable relationship between ENSO and CO anomalies is observed
in the other regions.

We perform single-variable lagged correlation analysis between each climate index and regional CO anoma-
lies and find that the climate indices show maximum correlation at various time lags depending on the
index (supporting information Figure S1). Also, correlation with indices other than ENSO in some regions
is equal or larger in magnitude than the correlation with ENSO (e.g., DMI in North Australasia, supporting
information Figure S1b). We therefore propose that a combined influence of climate patterns contributes
to the observed regional atmospheric CO IAV. Variability over the time periods of maximum variability
(September to December, see Figure 3) are modeled in section 4, using a combination of climate indices as
explanatory variables.

4. Relationship Between CO Variability and Climate
4.1. Regression Methodology
We use multiple linear regression to model the relationship between month average climate mode indices
and CO month average anomalies, using stepwise forward and backward variable selection to determine the
final model with best predictive power. Statistical models are developed using MATLAB and our analysis tools
are publicly available on the MATLAB Central File Exchange (https://www.mathworks.com/matlabcentral/
fileexchange/68319-southern-hemisphere-carbon-monoxide-modeling). The Bayesian information criterion
(BIC) is used as the selection criteria, due to it being well suited for predictive purposes (e.g., Faraway, 2014).
BIC penalizes models that contain more variables over models with fewer variables, thereby counteracting an
implicitly improved fit due to an increased number of variables. All combinations of the four climate indices
with lags between 1 and 8 months are tested, where each model can at most contain one lagged version of
each climate index. We found no major secondary peak in the partial autocorrelation plots for each climate
mode (not shown), which suggests that including only one lag will capture most of the variability. Therefore,
we choose only one lag for this analysis, but future research could analyze the difference between multiple
lags of one climate mode index compared to the models found here. Lags of zero are not considered because
our aim was to develop models with predictive properties for future applications. The maximum lag of
8 months was determined from single-variable lagged correlation analysis between indices and CO anomalies
(see supporting information Figure S1). Most regions showed largest-magnitude correlations below 8 months,
apart from TSA in Maritime SEA and Central Southern Africa, which showed a correlation peak with CO at
9 months, as well as Niño3.4 and DMI in Central South America, which show correlations peaks at 9 and
11 months, respectively. The 8-month maximum was chosen as a compromise between capturing the vari-
ability and increasing the likelihood of finding models by chance from testing too many models. This setup
results in 84 = 4, 096 combinations of the four climate indices for each region. For comparison, the number of
models to test by adding in a second lag for each climate mode would be 84x74 = 9, 834, 496, vastly increas-
ing the probability of finding a seemingly good model by chance. The highest-order terms in our models are
first-order interaction terms, which can be interpreted as the effect of one climate mode depending on the
state of the other, resulting in a multiplicative cross term. It is a reasonable assumption to include interaction
of climate modes due to the connectivity of the climate system. For each combination of climate indices we
determine the model with the best model from among these models using the highest adjusted R2.

For a given region, the general formula for a multiple linear regression model with first-order interaction terms
is shown in equation (1):

COanomaly(t) = 𝜇 +
∑

k

ak ⋅ 𝜒k(t − 𝜏k) +
∑

ij

bij ⋅ 𝜒i(t − 𝜏i) ⋅ 𝜒j(t − 𝜏j) (1)

where 𝜇 is a constant mean displacement; ak , bij are coefficients; k is between 1 and 4; 𝜒 are climate indices
(summarized in Table 1); and 𝜏 is a lag of 1 to 8 months for each index. Note that not all climate indices need
be included in this equation and in that case, k may be less than 4. Additionally, once selected, the 𝜏 is the
same for main effects and interaction terms. Fitting CO anomalies as opposed to concentrations removes
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Table 2
Determined Lag Values (𝜏k , Months), Coefficient Values and Model Fit Statistics for the Best Predictive Model of September to
December CO Anomalies for Each Region, Between 2001 and 2016

Australasia Southern Africa South America

Climate mode Maritime SEA North South Central South Central South

𝜏k

Niño 3.4 1 3 7 7 8 8 8

DMI 8 1 1 4 4 6 1

TSA 5 7 2 2 2 2 2

SAM 1 1 8 2 2 2 5

𝜇

Constant −0.29 (0.23) −0.35 (0.16) 0.05 (0.11) −0.09 (0.13) 0.04 (0.10) −0.13 (0.25) −0.06 (0.09)

𝜒k ak

Niño 3.4 1.15 (0.26) 0.31 (0.31) 1.45 (0.23) 1.86 (0.30) 1.71 (0.24) 3.14 (0.45) 1.17 (0.17)

DMI 0.67 (0.64) 1.34 (0.23) 0.9 (0.19) 0.79 (0.30) 1.085 (0.31) 3.07 (0.81) 1.19 (0.18)

TSA 0.70 (0.72) −1.10 (0.42) −1.86 (0.49) −1.00 (0.68) −0.98 (0.66) −4.84 (1.22) −0.73 (0.40)

SAM 0.33 (0.27) −0.19 (0.16) −0.48 (0.14) 0.40 (0.13) 0.18 (0.13) 0.03 (0.24) −0.05 (0.09)

𝜒i × 𝜒j bij

Niño 3.4×DMI −4.81 (0.77) 1.55 (0.40) NS NS 0.73 (0.35) 2.68 (1.10) NS

Niño 3.4×TSA NS −2.75 (0.79) −2.73 (0.73) −2.26 (0.93) −3.65 (0.79) −7.60 (1.42) −1.72 (0.54)

Niño 3.4×SAM NS NS NS NS NS −1.01 (0.29) −0.49 (0.16)

DMI×TSA −5.83 (1.94) NS NS 2.88 (1.45) NS NS NS

DMI×SAM NS NS NS NS NS NS −0.69 (0.19)

TSA×SAM −2.88 (0.94) −1.29 (0.53) NS NS 2.97 (0.72) 4.45 (1.42) NS

Model fit statistics

R2 0.75 0.72 0.60 0.51 0.62 0.65 0.63

Adjusted R2 0.72 0.69 0.56 0.46 0.57 0.60 0.58

RMSE (×1017) 1.59 0.95 0.82 1.04 1.03 1.84 0.66

ENSO-only R2 0.52 0.36 0.18 0.24 0.19 0.13 0.08

Note. Standard errors are shown in parentheses. Coefficient values (𝜇, ak , bij) are scaled by×1017. Selected model statistics
are also shown. R2 is a measure of variability explained with 1 being variability completely explained, Adjusted R2 disad-
vantages models with a higher number of variables, RMSE = root-mean-square error between measured and modeled
CO anomalies, ENSO-only R2 relates to single-variable correlation between Niño 3.4 and CO anomalies in each region. NS
= not selected; SEA = Southeast Asia; DMI = Dipole Mode Index; TSA = Tropical South Atlantic; SAM = Southern Annular
Mode; ENSO = El Niño–Southern Oscillation.

the necessity to model seasonality. The lack of a trend term is discussed below in section 4.2. Finally, if
interaction terms are present, then main effects associated with the interactions are necessary.

4.2. Best Predictive Models
Using the procedure described in section 4.1, we determine the model with best predictive power for each
region. Resulting time lags and coefficient values that regionally fit equation (1) are shown in Table 2. It is
not valid to directly compare the magnitudes of model coefficients between regions because different com-
binations of indices describe different regions. That is, models for each region must be interpreted as the
combination of all terms. However, comparison can be made across regions for the lag values, the presence
or absence of terms and the fitting statistics.

Time lags are interpreted as climate mode indices leading the CO anomalies. Optimum lag values found by
stepwise regression are not necessarily the same as the optimum lag from single-value cross correlation (sup-
porting information Figure S1) because multilinear fitting removes redundant information—thus accounting
for correlation between climate modes. Results indicate that Niño 3.4 leads CO anomalies with low time lags
for Maritime SEA and North Australasia compared to other regions (Table 2), reflecting the strong and direct
connection to ENSO phases. In contrast, TSA displays longer lead times in Maritime SEA and North Australasia,
compared to 2 months in other regions. This suggests a delayed influence of TSA on either transported CO
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or on teleconnections to local climate responses. Lead times for DMI are variable, and SAM generally displays
low lead times, apart from in South Australasia, where SAM leads CO anomalies by 8 months.

Our selected models require the use of all climate mode indices to explain CO variability. Additionally, all
the models include interaction terms (Table 2), which are found to add a substantial amount of explanatory
power. Selecting the best predictive models from a set that includes interaction terms resulted in an R2 at
least 0.1 points higher compared to selecting from a set without interaction terms (not shown). All possible
combinations of interaction terms occur at least once in our analysis, with the most recurrent across regions
being Niño 3.4×TSA—present everywhere except for Maritime SEA.

Generally, over 50% of variability is explained by the models, with over 70% for Maritime SEA and North Aus-
tralasia, reflecting that atmospheric CO in these regions has a strong connection to climate (Table 2). The
adjusted R2 values account for intrinsically improved fitting that occurs when including more variables (e.g.,
Faraway, 2014) and are between 0.03 and 0.05 points lower than R2. If we equivalently use only the ENSO
index at optimum time lag to predict CO anomalies over the same time period, we find substantially lower
R2 (0.55 to 0.23 points lower, last row of Table 2) than our models that include multiple climate indices and
interaction terms.

Maritime SEA displays the highest R2 value of all modeled regions (0.75, adjusted R2 0.72), indicating the major-
ity of CO variability in this region can be explained by the climate modes in the Southern Hemisphere and
tropics. The fit in this region seems to be better in the later record after 2010 compared to before, a property
that is not found in the other regions. Linear models tend to the mean, and the later record is less variable,
so would be expected to form a better fit. The cause of higher variability in the earlier record may be due to
changing sources of CO, but chemical transport modeling would be required to attribute the exact cause.

Although we only show one best model in Table 2, we record the top three models, rated by adjusted R2, for
Maritime SEA in the supporting information (Table S1 and Figure S5). BIC only slightly differs between the
three models, and lags are almost equivalent, only changing by 1 month for one index between different mod-
els. Small changes in lags are expected due to the broad peaks of correlation found in single-value correlation
analysis (supporting information Figure S1), which indicate that a range of similar lags may have similar skill.
The three best models also give the same combination of interaction terms, with little difference in coefficient
values, indicating that the best model results are robust. Similar results are found for the other regions.

The South Australasia region is represented by the most simple model, including only one interaction term
Niño 3.4×TSA. CO at South Australian sites has been found to be relatively more influenced by transported
fire emissions from South America and Southern Africa than the North Australian sites, with North Australia
experiencing more influence from local fire emissions (Buchholz et al., 2016). Therefore, this interaction term in
South Australasia could be a reflection of transported emissions. In comparison, the North Australasia model
includes Niño 3.4×DMI and TSA×SAM in addition to the Niño 3.4×TSA interaction term.

Moderate R2 values for most of the regions indicate missing explanatory variables, particularly for the region
with the lowest value: Central Southern Africa (R2 = 0.51). This region experiences transport from North
Africa and is close to the transport from emissions due to cropland expansions (Andela & van der Werf, 2014),
which would therefore experience a human-driven variability not necessarily driven by climate variability.
Also, possible biogenic contributions to CO may have counteracting variability patterns not captured in this
analysis (Marais et al., 2014).

The greatest number of interaction terms occurs for Central South America, with four combinations required,
suggesting many contributions to CO variability. However, the moderate R2 indicates some explanation of
variability is missing. In this case we may need to include the climate mode Atlantic Multi-decadal Oscillation
(AMO), as that is known to be related to rainfall in the Amazon region (Aragão et al., 2007), as well as burned
area (Chen et al., 2016). There may also be a missing human component of emissions from deforestation activ-
ities (Chen et al., 2013; Tang & Arellano, 2017) that involves felling biomass followed by drying and subsequent
burning. Although the main amount of burning from this human component would occur in the dry season
and the dryness of fuel would be related to climate responses, the amount of biomass available to burn (and
consequently emissions) would not necessarily be related to climate. Additionally, our chosen regions could
be too large and potentially encompass counteracting modes of variability (Holz et al., 2012).

Modeled and measured anomaly time series are plotted in Figure 4. The models generally reproduce the
anomaly maxima and minima. However, it is clear that the models underperform in some years. Specifically,
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Figure 4. Measured and model predicted CO anomalies for September to December in the studied regions between
2001 and 2016. Residual shows the difference between the two data sets (measured value-modeled value).
SEA = Southeast Asia.

the 2006 maximum in Maritime SEA and 2007 maximum in Central South America is not well captured. Models
for both of the Southern African regions have difficulty reproducing the magnitude of 2009 and 2010 anoma-
lies. Poor skill in these years could be explained by alternative responses to climate in these regions. Therefore,
future analysis of a time-varying climate relationship may help explain more variability.

Measurement-model residuals do not indicate any need for a model term to account for a trend or system-
atic bias. Although global background CO has been found to show a trend of approximately −1% per year
(Worden et al., 2013), the anomaly data sets developed here show no trend. We find that accounting for any
trend in the fitting algorithm did not improve statistics for the selected best model. A lack of a significant CO
trend in our analysis is most likely due to focusing on biomass burning source regions, where large variability
in sources masks any trend signal. Strode and Pawson (2013) found that more than 20 years of measurements
are required to determine a 3% per year magnitude trend over biomass burning regions, and consequently, a
longer time period would be required here to determine a smaller magnitude trend of −1% per year. Future
analysis with longer time series may need to revisit CO trends.

4.3. Forward Prediction Capability for Maritime SEA
Predicting atmospheric composition in Maritime SEA has the potential to provide early warning about air
quality hazards that could assist in prevention of health consequences. For example, studies of the air pol-
lution from 2015 biomass burning in this region found severe impacts on human health (Crippa et al., 2016;
Koplitz et al., 2016). We assess predictive capability of our technique by determining the coefficients in the
Maritime SEA region using CO anomalies and climate indices between 2001 and 2014. Subsequently, the

Figure 5. Measured and model predicted CO anomalies in Maritime SEA.
Model was trained using 2001–2014 measured CO anomalies and
subsequently applied to 2015–2016 climate indices (indicated by different
icons). Note that the modeled values are slightly different to those in
Figure 4. SEA = Southeast Asia.

resulting model is applied to climate index values for 2015 and 2016 in
order to predict CO anomalies for these years. We find the best predic-
tive model for 2001–2014 using the methodology described in section 4.1,
apart from lags being set to those determined in section 4.2.

Even without including the 2015 and 2016 data during fitting, the result-
ing model is very similar to the selected best Maritime SEA model from
section 4.2 and is able to predict the peak CO anomaly in 2015 to within
20% of the measured value and the 2016 minimum anomaly to within 7%
(Figure 5). These anomalies are predicted with a 1-month lead time. Coef-
ficient of variation for the predicted data (2015–2016) is 0.97, with mean
bias of −3%, relative to the measurements. This indicates that the statis-
tical model developed here has potential to be used as an operational
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prediction tool to forecast CO loading, which can be used as a proxy for fire emissions in air quality models
for the Maritime SEA region. Future research will include assessing the robustness of predictability by ran-
dom selection of training and test data. Limiting the lags to longer lead times will also be investigated to
determine the longest viable lead time. In addition to future CO prediction, the model will be applied to past
measured climate modes, which span decades, consequently providing insight for recent changes in regional
atmospheric composition.

5. Discussion of Potential Causality

We have shown that the statistical methodology applied has predictive capabilities for atmospheric CO vari-
ability. However, a limitation of this method is that the resulting models describe a relationship but do not
imply causality. The physical action of the link between climate modes and atmospheric composition may be
through the influence of climate on processes that affect both local and distant emissions, as well as transport
pathways. In order to disentangle these processes and attribute causality, global chemical transport modeling
along with a similar climate index regression analysis is required and is the subject of future research. How-
ever, here we compare our results to previous findings in order to gain insight into how our models relate to
causal effects.

There is a strong relationship between biomass burning and CO in our regions of study, so we expect that
climate-burned area relationships will be a component of climate-CO relationships. Chen et al. (2016) per-
formed linear regression analyses between ocean climate indices and a 1∘ ×1∘ grid of burned area to produce
coherent regions where similar model parameters were found, with a maximum of two variables in their result-
ing models. Their method further differed from ours in that they used single-variable correlation to set the lag
and climate mode index of the first variable, thereby essentially fitting the residual with second variable, with
some flexibility. In general, they found that nonlinear combinations produced better correlations than linear
combinations of the same model, supporting our finding of the benefit of interaction terms. We consequently
use the two-variable models of Chen et al. (2016) to interpret our interaction terms.

Chen et al. (2016) found that Pacific and Indian Ocean climate indices were important for Maritime SEA and
North Australasia, which is consistent with our results. This suggests that when limiting regression model
terms to two, the Pacific and Indian Oceans provide the greatest influence for these regions. Chen et al. (2016)
findings also suggest that the combination of these two ocean terms in our models (Niño 3.4×DMI) mainly
influences local burning emissions. In comparison, our South Australasian region does not include the Indian
and Pacific Ocean interaction term, reflecting that this region is mainly influenced by transported emissions
from regions other than Maritime SEA or North Australasia.

The only relevant region from Chen et al. (2016) for Africa is a subportion of our Central Southern Africa region,
where they found that the Indian and Atlantic Oceans are important, suggesting our DMI×TSA influences
local burning. In our Central South America region, Chen et al. (2016) found three subregions with separate
coherent model parameters, which may be the reason we find such a complicated model in our analysis. The
Indian, Atlantic, and Pacific Oceans were all important for influencing burning in the Amazon (Chen et al.,
2016). Apart from the southwest Amazon region where the AMO was important, Chen et al. (2016) found that
Southern Hemisphere ocean basins had the major influence on areas within our study regions, supporting
our choice of climate mode indices. The relatively low explanation of variability in our model for the South
American regions could therefore be due to omitting the AMO index from our analysis.

Overall, our best fit models include more terms than Chen et al. (2016), which reflects that variability in CO
loading is driven by more than just burned area within each region. Study of atmospheric loading com-
plements burned area and fire emission studies by also accounting for transported sources. The benefit of
predicting CO anomalies directly provides a link to complete air quality responses, intrinsically including
changes in transported sources of CO. In contrast, fire products must be converted into emissions using emis-
sion factors (which can be quite uncertain) and subsequently used in regional or global models to interpret
spatial coverage and transported contributions. Consequently, both CO anomalies and the resulting statistical
models found here can be used to test climate-chemistry models, potentially providing insight into sources
of model error.
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6. Conclusion

Our study investigates an aspect of the coupling between chemistry and climate. Specifically, we analyze a

16-year record of total column CO from the satellite instrument MOPITT and find that IAV is within a similar

range for all investigated regions of the Southern Hemisphere and tropics. The connection to climate is deter-

mined by systematically developing explanatory models between climate mode indices and CO anomalies,

with the goal of predicting future CO loading during the fire season.

We analyze the ability of indices for four climate modes (ENSO, IOD, TSA, and AAO), chosen to represent the

major oceans of the Southern Hemisphere and tropics, to reproduce variability in atmospheric CO loading. We

find that climate modes can be used to predict CO anomalies. Using stepwise forward and backward variable

selection with BIC to identify the optimal regression models between climate indices and CO anomalies, we

find different results for the seven regions of interest (Maritime SEA, plus two subregions in each of Australa-

sia, Southern Africa, and South America). Generally, over 50% of variability can be explained by the climate

modes in all regions and above 70% in the tropical regions of Maritime SEA and North Australasia. Moderate

explanation of variability in the other regions is likely be a symptom of missing explanatory variables. Future

studies that: include an index describing the human-driven component (such as cropland or deforestation

dynamics), use a moving climate-CO relationship, and/or include the AMO climate mode index for the South

American regions, may improve the ability of our models to represent CO variability. With the future addi-

tion of more explanatory variables, we are also interested in relaxing the lag values to greater than 1 month,

in order to find the maximum possible lead time for predicting CO anomalies with confidence. Recent atmo-

spheric composition changes outside of the current satellite CO record will also be explored by applying the

models to past climate modes.

A unique aspect of our analysis is testing for optimum climate mode interactions. We find that first-order inter-

action terms of the climate modes are necessary when explaining CO variability. In all our models, interaction

terms are required, with at least one first-order interaction term in every region. This indicates the importance

of interactions between different climate modes in driving atmospheric composition responses.

We also assess the predictive power for the Maritime SEA region and find good predictability, indicating a

potential for use in forecasting air quality in the region. Since these predictions intrinsically include changes

in transported sources of CO, they also inform air quality responses to climate-driven fires.

Acronyms

AAO Antarctic Oscillation

ASEAN Association of Southeast Asian Nations

AMO Atlantic Multi-decadal Oscillation

BIC Bayesian information criterion

CAM-chem Community Atmosphere Model with Chemistry

DMI Dipole Mode Index (climate mode index for the Indian Ocean Dipole)

ENSO El Niño–Southern Oscillation

IOD Indian Ocean Dipole

IAV Interannual variability

MERRA Modern-Era Retrospective Analysis for Research Applications

MOPITT Measurements Of Pollution In The Troposphere (satellite instrument measuring

carbon monoxide)

NCAR National Center for Atmospheric Research

NOAA National Oceanic and Atmospheric Administration

SAM Southern Annular Mode (Climate mode index for the Antarctic Oscillation)

SEA Southeast Asia

TIR Thermal infrared

TSA Tropical South Atlantic (climate mode index for the South Atlantic Ocean)
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CD-ROM and documentation. Bulletin of the American Meteorological Society, 82(2), 247–267.
https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2

Koplitz, S. N., Mickley, L. J., Marlier, M. E., Buonocore, J. J., Kim, P. S., Liu, T., et al. (2016). Public health impacts of the severe haze in equatorial
Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind
smoke exposure. Environmental Research Letters, 11(9), 94023. https://doi.org/10.1088/1748-9326/11/9/094023

Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., et al. (2012). CAM–chem: Description and evaluation of
interactive atmospheric chemistry in the Community Earth System Model. Geoscientific Model Development, 5, 369–411.
https://doi.org/10.5194/gmd-5-369-2012

Langmann, B., Duncan, B., Textor, C., Trentmann, J., & van der Werf, G. R. (2009). Vegetation fire emissions and their impact on air pollution
and climate. Atmospheric Environment, 43(1), 107–116. https://doi.org/10.1016/j.atmosenv.2008.09.047

MOPITT Science Team (2013). MOPITT/Terra Level 2 CO vertical profiles derived from thermal infrared radiances, version 7, USA:NASA
Atmospheric Science Data Center (ASDC), Hampton, VA. https://doi.org/10.5067/TERRA/MOPITT/MOP02T_L2.007

Marais, E. A., Jacob, D. J., Guenther, A., Chance, K., Kurosu, T. P., Murphy, J. G., et al. (2014). Improved model of isoprene emissions in Africa
using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: Implications for oxidants and particulate matter.
Atmospheric Chemistry and Physics, 14(15), 7693–7703. https://doi.org/10.5194/acp-14-7693-2014

Marengo, J. A., Espinoza, J. C., & Extreme seasonal droughts and floods in amazonia: Causes, trendsandimpacts (2016). International Journal
of Climatology, 36(3), 1033–1050. https://doi.org/10.1002/joc.4420

Pumphrey, H. C., Santee, M. L., Livesey, N. J., Schwartz, M. J., & Read, W. G. (2011). Microwave Limb Sounder observations of
biomass-burning products from the Australian bush fires of February 2009. Atmospheric Chemistry and Physics, 11(13), 6285–6296.
https://doi.org/10.5194/acp-11-6285-2011

Reddington, C. L., Butt, E. W., Ridley, D. A., Artaxo, P., Morgan, W. T., Coe, H., & Spracklen, D. V. (2015). Air quality and human health
improvements from reductions in deforestation-related fire in Brazil. Nature Geoscience, 8(10), 768–771.
https://doi.org/10.1038/ngeo2535

Reynolds, R. W. (1988). A real-time global sea surface temperature analysis. Journal of Climate, 1(1), 75–87.
https://doi.org/10.1175/1520-0442(1988)001<0075:ARTGSS>2.0.CO;2

Reynolds, R. W., & Marsico, D. C. (1993). An improved real-time global sea surface temperature analysis. Journal of Climate, 6(1), 114–119.
https://doi.org/10.1175/1520-0442(1993)006<0114:AIRTGS>2.0.CO;2

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal
of Climate, 15, 1609–1625.

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., et al. (2011). MERRA: NASA’s Modern-Era Retrospective Analysis
for Research and Applications. Journal of Climate, 24, 3624–3648. https://doi.org/10.1175/JCLI-D-11-00015.1

Rodgers, C. D. (2000). Inverse Methods for Atmospheric Sounding, Theory and Practice. New Jersey: World Scientific Publishing Co. Ptd Ltd.
Russell-Smith, J., Yates, C. P., Whitehead, P. J., Smith, R., Craig, R., Allan, G. E., et al. (2007). Bushfires ‘down under’: Patterns and implications of

contemporary Australian landscape burning. International Journal of Wildland Fire, 16, 361–377. https://doi.org/10.1071/WF07018
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751),

360–363. https://doi.org/10.1038/43854
Saji, N., & Yamagata, T. (2003). Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research, 25(2), 151–169.

https://doi.org/10.3354/cr025151
Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., Guenther, A., et al. (2014). Isoprene emissions over Asia

1979–2012: Impact of climate and land-use changes. Atmospheric Chemistry and Physics, 14(9), 4587–4605.
https://doi.org/10.5194/acp-14-4587-2014

Strode, S. A., & Pawson, S. (2013). Detection of carbon monoxide trends in the presence of interannual variability. Journal of Geophysical
Research: Atmospheres, 118, 12,257–12,273. https://doi.org/10.1002/2013JD020258

Tang, W., & Arellano, A. F. (2017). Investigating dominant characteristics of fires across the Amazon during 2005–2014 through satellite
data synthesis of combustion signatures. Journal of Geophysical Research: Atmospheres, 122, 1224–1245.
https://doi.org/10.1002/2016JD025216

Thompson, D. W. J., & Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: Month-to-month variability. Journal of
Climate, 13(5), 1000–1016. https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2

van der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N., & Dolman, A. J. (2008). Climate controls on the variability of fires in the tropics and
subtropics. Global Biogeochemical Cycles, 22(3), GB3028. https://doi.org/10.1029/2007GB003122

BUCHHOLZ ET AL. 9799

https://doi.org/10.5194/bg-14-3995-2017
https://doi.org/10.1073/pnas.1524888113
https://doi.org/10.1038/ngeo443
https://doi.org/10.1029/2006GL026804
https://doi.org/10.1175/JCLI4134.1
https://doi.org/10.1890/ES12-00234.1
https://doi.org/10.5194/acp-17-4565-2017
https://doi.org/10.1175/1520-0477(1996)077&lt;0437:TNYRP&gt;.0.CO;2
https://doi.org/10.1175/1520-0477(2001)082&lt;0247:TNNYRM&gt;2.3.CO;2
https://doi.org/10.1088/1748-9326/11/9/094023
https://doi.org/10.5194/gmd-5-369-2012
https://doi.org/10.1016/j.atmosenv.2008.09.047
https://doi.org/10.5067/TERRA/MOPITT/MOP02T_L2.007
https://doi.org/10.5194/acp-14-7693-2014
https://doi.org/10.1002/joc.4420
https://doi.org/10.5194/acp-11-6285-2011
https://doi.org/10.1038/ngeo2535
https://doi.org/10.1175/1520-0442(1988)001&lt;0075:ARTGSS&gt;2.0.CO;2
https://doi.org/10.1175/1520-0442(1993)006&lt;0114:AIRTGS&gt;2.0.CO;2
https://doi.org/10.1175/JCLI-D-11-00015.1
https://doi.org/10.1071/WF07018
https://doi.org/10.1038/43854
https://doi.org/10.3354/cr025151
https://doi.org/10.5194/acp-14-4587-2014
https://doi.org/10.1002/2013JD020258
https://doi.org/10.1002/2016JD025216
https://doi.org/10.1175/1520-0442(2000)013&lt;1000:AMITEC&gt;2.0.CO;2
https://doi.org/10.1029/2007GB003122


Journal of Geophysical Research: Atmospheres 10.1029/2018JD028438

Voulgarakis, A., Marlier, M. E., Faluvegi, G., Shindell, D. T., Tsigaridis, K., & Mangeon, S. (2015). Interannual variability of tropospheric
trace gases and aerosols: The role of biomass burning emissions. Journal of Geophysical Research: Atmospheres, 120, 7157–7173.
https://doi.org/10.1002/2014JD022926

Voulgarakis, A., Savage, N. H., Wild, O., Braesicke, P., Young, P. J., Carver, G. D., & Pyle, J. A. (2010). Interannual variability of tropospheric
composition: The influence of changes in emissions, meteorology and clouds. Atmospheric Chemistry and Physics, 10(5), 2491–2506.
https://doi.org/10.5194/acp-10-2491-2010

Wespes, C., Hurtmans, D., Clerbaux, C., & Coheur, P.-F. (2017). O3 variability in the troposphere as observed by IASI over 2008–2016:
Contribution of atmospheric chemistry and dynamics. Journal of Geophysical Research: Atmospheres, 122, 2429–2451.
https://doi.org/10.1002/2016JD025875

Wespes, C., Hurtmans, D., Emmons, L. K., Safieddine, S., Clerbaux, C., Edwards, D. P., & Coheur, P.-F. (2016). Ozone variability in the
troposphere and the stratosphere from the first 6 years of IASI observations (2008–2013). Atmospheric Chemistry and Physics, 16(9),
5721–5743. https://doi.org/10.5194/acp-16-5721-2016

Worden, H. M., Deeter, M. N., Frankenberg, C., George, M., Nichitiu, F., Worden, J., et al. (2013). Decadal record of satellite carbon monoxide
observations. Atmospheric Chemistry and Physics, 13, 837–850.

Yin, Y., Ciais, P., Chevallier, F., van der Werf, Fanin, Broquet, G., et al. (2016). Variability of fire carbon emissions in equatorial Asia and its
non-linear sensitivity to El Niño. Geophysical Research Letters, 43, 10,472–10,479. https://10.1002/2016GL070971

Zhang, L., Jacob, D. J., Bowman, K. W., Logan, J. A., Turquety, S., & Hudman, R. C. (2006). Ozone-CO correlations determined by the TES
satellite instrument in continental outflow regions. Geophysical Research Letters, 33, L18804. https://doi.org/10.1029/2006GL026399

Erratum

In the originally published version of this article, AMO is incorrectly defined in the acronyms list. It should
be defined as Atlantic Multi-Decadal Oscillation instead of Atlantic Meridional Oscillation. This error has since
been corrected and this version may be considered the authoritative version of record.
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